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Heat conduction in fractal tree-like branched networks
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Abstract

The geometric structures and fractal dimensions of fractal tree-like branched networks have the significant influence on the efficiency
of physiological, communication and transport processes. We analyze the heat conduction through symmetric fractal tree-like branched
networks. We obtain the expression of thermal conductivity in the networks and analyze the relationship between the effective thermal
conductivity (ETC) and the geometric structures of the networks. We have found that the ETC of the networks is always less than that of
a single channel, and the value of the thermal conductivity of the network can tend to zero under certain conditions; as long as the
branching number N is fixed, the heat conduction reaches the fastest rate at the same diameter ratio bm which is corresponding to
the fractal dimension Dd = 2.0. We have also found that the heat conduction in the networks is rather different from Murray’s law both
for laminar regime (2�1/3) and for turbulent flow regime (2�3/7).
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The transports in dendritic structures of natural
systems/networks such as mammalian circulatory and
respiratory systems, leaves, river basins, energy networks,
world-wide webs, internet and social networks are of con-
siderable current interest [1–7]. It has been shown that
the structures of these networks may have the fractal
tree-like branched structures which can be space filling [8]
and ensure minimal dissipation [9–13]. However, most of
attentions are paid to mass transfer in the branched struc-
tures, and the heat conduction in the networks has not
been studied thoroughly, especially, the relationship
between the geometric structures and the properties of heat
conduction is not well understood.

Tree-like branched networks play a unique role in phys-
ics, biology and engineering. The investigations of the tree-
like branched network began from 1926 since Murray
proposed Murray’s law [14] for cardiovascular system.
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Numerous subsequent researches extended Murray’s work.
Noteworthy is West et al.’s [9] work, who discussed the ori-
gin of allometric scaling laws in biology in a rather general
and detailed fashion. Bejan [13,15,16] developed ‘‘Con-
structal Theory’’ by optimizing the access between one
point and a finite volume and applied the theory to the
cooling of electronic devices and other engineering fields.
The constructal principle is purely geometric, the time
arrow of this construction is from small to large, and
the most important is that the optimal result leads to the
tree-like branched network. Based on the constructal
theory, Bejan [17] predicted 3/4-power relation between
body heat loss and body size from pure theory.

Fractals abound in nature. Fractal can not only describe
the fractal objects, but also serve as the basis for designing
equipment. Kearney [18] pointed out that equipment built
with fractal characteristics could offer advantages over tra-
ditional fluid mixers and distributors. Chen and Cheng [11]
studied the convective heat transfer and pressure drop in a
fractal branched net of rectangular shape, and compared
the network with the conventional parallel channels. They
drew a conclusion that the fractal tree-like branched
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Nomenclature

Ae equivalent cross-sectional area of the network
Ak cross-sectional area of the kth level channel
dk branch diameter at the kth level
Dd fractal dimension of channel diameter distribu-

tion
Dl fractal dimension of channel length distribution
le equivalent length of the network
lk branch length of the kth level
N branching number
m total number of branching levels
R total thermal resistance of the entire network
Rk thermal resistance of a single channel of the kth

level
V total volume of the network

Greek symbols

b ratio of the diameter of the channel at the
(k + 1)th branch level to that at the kth branch
level

bm diameter ratio at which the effective thermal
conductivity (ETC) is greatest

c ratio of the length of the channel at the (k + 1)th
branch level to that at the kth branch level

k thermal conductivity of the channel material
ke effective thermal conductivity (ETC)
k+ dimensionless effective thermal conductivity
D diameter exponent

Subscripts
k rank of channel
e effective

Fig. 1. Sketch of (a) a fractal tree-like branched network (N = 2, m = 4),
and (b) the kth branching level with N = 2.
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network can increase the total convective heat transfer rate
and reduce the total pressure drop in the fluid.

Although the fractal tree-like branched network has
so many important physical properties, the relationship
between the thermal properties and its geometrical features
is not well understood. In this paper, we study the proper-
ties of heat conduction in the network using a more general
model. We derive the analytical expressions of the thermal
conductivity and discuss the relationship between the ther-
mal conductivity and the geometrical parameters of the
network. We also compare our results to the transport
properties in botanical tree, human cardiovascular system
and bronchial tree [14,19,20], which obey Murray’s law.

2. The fundamental features of the fractal tree-like branched

networks

Most distribution systems can be described by a
branched network in which the sizes of tubes regularly
decrease. The commonality of natural branched networks
has also been recognized in the field of fractal geometry.
In fractal geometry [8], many of the geometrical features
of a natural branched network can be approximated by
repeating a finite number that follows a postulated prop-
erly designed algorithm, which results in an increasing
number of channels with smaller diameter and an increase
in the total cross-sectional flow area. It has been shown
that mass transfer in these tree-like networks is efficient;
similarly, heat transfer in such network may have many
advantages.

We can obtain the tree-like network structures of differ-
ent branching levels as shown in Fig. 1(a) by repeating the
elemental branch as shown in Fig. 1(b). We assume that
each branch of the network is smooth cylinder, and thick-
ness of the tube wall can be ignored. Suppose that every
channel is divided into N branches at the next level (e.g.,
N = 2 in Fig. 1). The model presented here should be
viewed as an idealized representation in which we ignore
complications such as tapering of vessels and nonlinear
effects. These play only a minor role in determining the
properties of the entire network and could be incorporated
in more detailed analysis of specific systems. A typical
branch at some intermediate level k (k = 0,1,2, . . .) has
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length lk and diameter dk (Fig. 1). To characterize the
branch, we introduce scale factors as:

c ¼ lkþ1=lk and b ¼ dkþ1=dk ðk ¼ 0; 1; 2; . . .Þ ð1Þ
Thus it is easy to get

lk ¼ l0c
k and dk ¼ d0b

k ð2Þ
where l0 and d0 are the length and diameter of the 0th
branching level, respectively. According to the fractal char-
acteristics of the structure [8], we have

N ¼ c�Dl ¼ b�Dd ð3Þ

where Dl and Dd is the fractal dimensions of channel length
and diameter distribution, respectively.

3. Heat conduction in the fractal tree-like branched networks

In this section, the effective thermal conductivity (ETC)
by thermal–electrical analogy is derived. For convenience
we assume that the network as shown in Fig. 1 is composed
of the material of high thermal conductivity k, which is
much larger than that of the material around the channels.
So, we can only consider the heat conduction along the
channels and neglect the heat conduction in other direc-
tions. This means that the one dimensional heat flow model
is applied in this work. The one dimensional heat flow
model and the thermal–electrical analogy technique were
applied to analyze the effective thermal conductivity of
heterogeneous media such as porous media by many
researches [22–25].

According to the Fourier’s law, the thermal resistance of
a single channel of the kth level channel can be expressed as
Rk = lk/(kAk). Fig. 2 displays the thermal–electrical anal-
ogy network of thermal resistance, with N = 2, m = 2.
The total thermal resistance of the entire network, is given
by the Ohm’s law model as

R ¼
Xm

k¼0

Rk

Nk ¼
4l0

kpd2
0

1� ðc=Nb2Þmþ1

1� c=Nb2
ð4Þ

Inserting Eq. (3) into Eq. (4), we can get the relation
between the total thermal resistance and the fractal dimen-
sions as well as the network structures

R ¼ 4l0

kpd2
0

1� N ð2=Dd�1=Dl�1Þðmþ1Þ

1� N ð2=Dd�1=Dl�1Þ ð5Þ
Fig. 2. The thermal–electrical analogy at N = 2 and m = 2.
The fractal tree-like branched network can be equivalent
to a single channel, and then the thermal conductivity of
the equivalent single channel is defined as the effective ther-
mal conductivity (ETC) of the network. Then, the thermal
resistance for the equivalent single channel can be written
as

R ¼ le=ðkeAeÞ ð6Þ

where le, Ae, ke are the equivalent length, cross-sectional
area and thermal conductivity of the network, respectively.
The length of the equivalent single channel is

le ¼
Xm

k¼0

lk ¼ l0

1� cmþ1

1� c
.

The effective cross-sectional area is defined as the ratio
of the total volume V to the effective length le of the net-
work, i.e., Ae = V/le. Due to Eq. (2), the total volume is
expressed as

V ¼
Xm

k¼0

NkV k ¼
Xm

k¼0

Nkp
dk

2

� �2

lk ¼
pd2

0l0

4

1� ðNb2cÞmþ1

1� Nb2c

ð7Þ

The effective cross-sectional area of the network is

Ae ¼ V =le ¼
pd2

0

4

1� c
1� cmþ1

1� ðNb2cÞmþ1

1� Nb2c
ð8Þ

Then, the ETC of the network is

ke ¼
le

RAe

¼ k
1� cmþ1

1� c

� �2
1� Nb2c

1� ðNb2cÞmþ1

1� c=Nb2

1� ðc=Nb2Þmþ1

ð9Þ

Substituting Eq. (3) into Eq. (9), the ETC of the network
can be also expressed as

ke ¼ k
1� N�ðmþ1Þ=Dl

1� N�1=Dl

� �2
1� N ð1�1=Dl�2=DdÞ

1� N ð1�1=Dl�2=DdÞðmþ1Þ

� 1� N ð2=Dd�1=Dl�1Þ

1� N ð2=Dd�1=Dl�1Þðmþ1Þ ð10Þ

From Eqs. (9) and (10), the dimensionless ETC is obtained
as

kþ ¼ ke

k
¼ 1� cmþ1

1� c

� �2
1� Nb2c

1� ðNb2cÞmþ1

1� c=Nb2

1� ðc=Nb2Þmþ1

ð11Þ

and

kþ ¼ ke

k
¼ 1� N�ðmþ1Þ=Dl

1� N�1=Dl

� �2
1� N ð1�1=Dl�2=DdÞ

1� N ð1�1=Dl�2=DdÞðmþ1Þ

� 1� N ð2=Dd�1=Dl�1Þ

1� N ð2=Dd�1=Dl�1Þðmþ1Þ ð12Þ

Eqs. (11) and (12) reveal that the dimensionless ETC of the
networks depends on the geometric structures.
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4. Results and discussion

In this section, we compute the dimensionless ETC and
determine the relationship among the ETC, the geometrical
factors and fractal dimensions of the network. Fig. 3 com-
pares the effect of length ratio c, diameter ratio b, branch-
ing number N and total number of branching levels m on
the ETC. It is found that small variations in the network
geometrical structures can induce very large variations in
the ETC, which is much similar to the net air flux in bron-
chial tree [20,21]. It is clear that the ETC is always smaller
than that of the material of the channel. Fig. 3(a) and (b)
show that the ETC of the network decreases as the increase
of length ratio c at the fixed N and m. Fig. 3(a) reveals, at
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Fig. 3. The dimensionless effective thermal conductivity k+ versus (a) c
and b at N = 2 and m = 3, (b) c and b at N = 3 and m = 3, and (c) b and m

at N = 2 and c = 0.6.
N = 2 and m = 3, that there exists a same diameter ratio
bm = 0.707, at which the ETC is greatest, equal to the ther-
mal conductivity of the channel material. Fig. 3(b) also
reveals, at N = 3 and m = 3, that the ETC reaches the max-
imum value at bm = 0.577, which is less than 0.707 as N = 2
and m = 3. Fig. 3(c) indicates that for the fixed branching
number N = 2 and length ratio c = 0.6, although the total
number of branching levels m is different, there also exists
the same diameter ratio bm = 0.707, at which the ETC is
greatest. It is also found from Fig. 3 that when b < bm,
the ETC increases as the increase of the diameter ratio b,
but when b > bm, the ETC decreases as the increase of
the diameter ratio b.

Fig. 3 also reveals that the maximum dimensionless
ETC is always 1.0, i.e., equal to that of channel material,
and is independent of the branching number N, total num-
ber of branching levels m and length ratio c. These results
are consistent with the physical situations. The further
results of Eq. (11) are shown in Figs. 4 and 5. Fig. 4 shows
the relation between the ETC and branching number N,
diameter ratio b at the total number of branching level
m = 3 and length ratio c = 0.6. Fig. 5 depicts the relation
between the diameter ratio (bm) of the maximum ETC
versus the branching number N. From Figs. 3–5 it is also
found that the diameter ratio (bm) for the maximum ETC
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Fig. 4. The dimensionless effective thermal conductivity k+ versus b for
different N at m = 3 and c = 0.6.
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Fig. 7. The dimensionless effective thermal conductivity k+ versus N for
different m at c = 0.4 and b = 0.8.

3750 P. Xu et al. / International Journal of Heat and Mass Transfer 49 (2006) 3746–3751
is only related to the branching number N but is indepen-
dent of the total number of branching levels m and length
ratio c, and the value of bm decreases with the increase of
branching number N. For N = 2 and d1 = d2 (two branch-
ing (daughter) channels have the same diameter in each
level), the diameter ratio bm = 0.707 � 2�1/2 which exactly
satisfy the relation [8] dD ¼ dD

1 þ dD
2 (where d is the dia-

meter of mother channel), where the diameter exponent
being D = 2. Furthermore, we find that the branching num-
ber N satisfies bm = N�1/D (where D = 2, N = 2,3,4, . . .) for
the maximum thermal conductivity, see Fig. 5. For the
water flow in botanical tree, blood flow in human cardio-
vascular system and airflow in bronchial tree [14,19,20],
the optimized diameter ratio is close to the space-filling
branching ratio 2�1/3 ffi 0.7937 known as Murray’s law
[14]. It has been shown by Bejan et al. [26] that, in the lam-
inar regime the tree conductivity is maximized with
bm = 2�1/3 under the constraints of constant total duct vol-
ume and area allocated to the tree and the optimized diam-
eter is bm = 2�3/7 for the turbulent flow regime. It is clear
that the heat conduction in the networks is rather different
from Murray’s law both for laminar regime (2�1/3) and for
turbulent flow regime (2�3/7).

Fig. 6 shows the dimensionless ETC versus the fractal
dimensions of length and diameter distributions at different
branching numbers N and total number of branching levels
m. It is seen from Fig. 6 that for the fixed N and m, the larger
the Dl (i.e., the larger the length ratio c), the smaller the
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Fig. 6. The dimensionless effective thermal conductivity k+ versus (a) Dl

and Dd at N = 2 and m = 3, and (b) Dl and Dd at N = 3 and m = 5.
ETC , but the amplitude of variation is relatively small.
For the different Dl, N and m, the ETC reaches the maxi-
mum value, which is equal to that of the channel material
at the same fractal dimension Dd = 2.0. Further calculation
indicates that Dd = 2.0 corresponds to the diameter ratio bm

(see Eq. (3)), i.e., the ETC reaches the maximum, which is
equal to that of the channel material at the same fractal
dimension Dd = 2.0, independent of N, m and Dl. The result
Dd = 2.0 is consistent with the diameter exponent D = 2 and
independent of geometrical parameters, N, m and Dl.

The relation among the dimensionless ETC, branching
number N and total number of branching levels m is shown
in Fig. 7. The figure shows that for the fixed length ratio c
and diameter ratio b (c = 0.4, b = 0.8), the dimensionless
ETC decreases with the increase of N and m. It is interest-
ing to note that the ETC of the networks may tend to zero
when increasing the branching number N. This implies that
the thermal resistance of heat conductivity through the
fractal tree-like branched structures increases rapidly with
the branching number N.

5. Concluding remarks

We have derived the expression of the ETC and deter-
mined the relation among the ETC, the geometric struc-
tures and the fractal dimensions of the fractal tree-like
branched model. We have found that (1) the ETC of the
networks is always less than that of a single channel, and
the value of the thermal conductivity of the network can
tend to zero under certain conditions; (2) the longer the
branches (i.e., the larger the fractal dimension of length dis-
tribution Dl), the smaller the ETC; (3) as long as the
branching number N is fixed, the heat conduction reaches
the fastest rate (meaning the highest ETC) at the same
diameter ratio bm in spite of different total number of
branching levels m and length ratio c, and the maximum
of thermal conductivity equals that of a single channel.
Moreover, the position of the bm decreases with the
increase of the branching number N; (4) the ETC is the
greatest at fractal dimension Dd = 2.0, which is corre-
sponding to the diameter ratio bm, independent of other
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geometrical parameters. The maximum is equal to the ther-
mal conductivity of the channel material; (5) the more the
branches of the network, the higher the thermal resistance
of the networks. We have also found that the heat conduc-
tion in the networks is rather different from Murray’s both
for laminar regime (2�1/3) and for turbulent flow regime
(2�3/7), and the maximum thermal conductivity satisfies
bm = N�1/D for the branching number N (where D = 2,
N = 2,3,4, . . .) for the networks.

We have shown that heat conduction is similar to mass
transfer in fractal tree-like branched structures. Since the
self-avoidance narrows the choice of branching angle and
the total number of branching levels, the values of which
are thus restricted [8]. The results of this work show that
the properties of heat transfer of the networks may be
widely applied to the cooling of electronic devices, bioengi-
neering and biotechnology, materials of space equipments
etc. Under certain conditions, the property of low thermal
conductivity is also very important for designing insulation
materials and structures such as space equipments.
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